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Theoretical Methods evolution: quantum
computing, machine learning and A.l.

-How artificial intelligence can boost nuclear theory?
Neural network.

-Quantum computing. State of the art and applications
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Selected complex aspects of nuclear problems
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-Each nucleus is a complex problem per se.

Some evident sources of
complexity in nuclei

-There are many nuclei (>3000). Nuclear
phenomena evolve along the nuclear chart. A

unified description of all facets would be desirable.

-ldeally, one should get all phenomena from the bare interaction
BUT nuclei are mesoscopic systems (A~1-500) with bad numerical scaling.

1030

[

o
N
o

dimension

1010 F

R
*Ne (N;n=7)

@® conventional direct diagonalization
=0 MCSM
= 0_MCSM + K computer

10°

BN (Rfaods)

abquf “Ge (igomiol (N/

twice *Ni (pfg9) ,,
B0 (Ngy=2) 1]
per year sopg /(‘3* s?Mg_
2y e 28Xe (sdpf,

//‘SZF Ni

- @0 €
- Cr
2 @

-
Hozy (SENi c

2C (Nay=7) 4
=]

ab initio

0 (=) T | type

calculation

=6)

Bhw)

year

1
2000

2020

(from T. Otsuka)

(Energy landscape of a molecule)

# This motivates the search of disruptive techniques

(high risk/high potential benefits )



Machine learning: selected opportunities in nuclear physics

An illustration with the nuclear Energy Density Functional theory

“Human guided” reduction of complexity
using symmetry consideration

Protons

3000 measured nuclei

Self-consistent

Neutrons
Mean-field
Machine learning: a different angle of attack
Progress of machine learning: In nuclear theory:
@ Image classification: @ Machine learning for experimental ® ® ?
cancer detection, pal’tiCIe detection nuclear masses or radii tables 1
. —_—>
e Ger;erlatlve Al: @ Acceleration of EDF calculations ‘ . —_—
turbulence
@ Inverse problems: . ’ ’
—> A land of opportunities
cosmology
® Many body problem: Goals: =) Automatize the “theoretical production” process
spin systems, bosons
A review: m) Reduces “significantly” the numerical cost

G. Carleo et. al., arXiv:1903.10563 (2019)

m) Teach artificial intelligence (Al) to predict nuclear physics



Machine learning is a growing field

Some literature...

Neural networks, Bayesian Neural Net., Gaussian Processes were used to fit:

Nuclear masses

@ Athanassopoulos et. al. NPA 743 (2004)
RMS = 950 keV

@ Utama et. al. PRC 96 (2017)

@ Utama et. al. PRC 97 (2018)
RMS decreased by 40%

@ Zhang et. al. J Phys. G (2017)
Drip-lines

@ Neufcourt et. al. PRC 98 (2018)

@ Neufcourt et. al. PRL 122 (2019)

@ Niu et. al. PLB 778 (2018)
Estimation of uncertainties

Neural networks used as a mean to IR
extrapolate (N, — o)

Nuclear radii

@ Akkoyun et. al. J. Phys. G: NPP 40 (2013)
@ Utama et. al. J. Phys. G: NPP 43 (2016)

Fission yields

@ Lovell et. al. EPJ Web of Conf.(2019)
@ Wang et. al. PRL 123 (2019)
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One recent illustration: prediction of masses, deformation and spectrum by neural network

Conventional strategy

Compute its HFB

Map the energy
EAED
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Goal: replace the time-consuming part by a neural network

Network trained on a limited

set of HFB datas
Map the energy

\ Landscape onto a 5D .
/ A IS Collective Hamiltonian Deformations,
Select nucleus ; S 0 o vin. Inertias} Energy Spectrums,
(N,2) = ; ¢\, Rot. Inertias Transition
amplitudes, ...

Regnier, Lasseri, Ebran, Penon, arXiv:1910.04132



https://arxiv.org/abs/1910.04132

One recent illustration: prediction of masses, deformation and spectrum by neural network

Conventional strategy
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FIG. 2: (a) The AMEDEE database nuclei are plotted in
grey as a function of N and Z. The red squares stand for
nuclei included in the 10% training set obtained by the active
learning. The panels (b),(c) and (d) display the resulting
RMS per nucleus (ﬁtl/z(N,Z)) for the three outputs Eurs,
Z> and By respectively.

Regnier, Lasseri, Ebran, Penon, arXiv:1910.04132



https://arxiv.org/abs/1910.04132

Another potential use of Al: learning how to select Many-body states
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Entering into the Quantum Computing age

Rigetti IBM Google

A e T2y
Limitations: Future:
~ 50 qubits ~ 500 qubits
Example ~ 50 gates ~ 500 gates

There is a lot of excitement in this field due to substantial progress
1. Quantum processing units now have ten(s) of qubits
I 11 14 2. Businesses are driving this: Google, IBM, Microsoft, Rigetti, D-
- IBM Q Experience Wave, e

3. Software is publicly available (PyQuil, XACC, OpenQASM,
OpenFermion)

. . IBM QX5 (16 qubits)
RIGETTI superconducting 19 Qubit
: H imely period (f
% N rom G. Hagen)
NN g J

4. Firstreal-world problems solved: H2 molecule on two qubits
[O'Malley et al., Phys. Rev. X 6,031007 (2016)]; BeH2 on six
qubits [Kalandar et al., Nature 549, 242 (2017)]; ...



Simulating physics with computers-1982 128 qubits
Richard P. Feynman (Nobel Prize in Physics 1965) Rigetti
72 qubits
Quantum “Nature isn't classical, dammit, — Google
= and if you want to make a -
Compl“'.atlon simulation of nature, you'd better . ™
make it quantum mechanical, and X
and Quantum by golly it's a wonderful problem, s12qubits
= because it doesn't look so easy." DWave
\ ubi ubits
Information
| MICHAEL A. NIELSEN ey W ooames | Dwee | oM |
Il‘_ and ISAAC L. CHUANG ,
1927 1982 2000 2006 2011 | 2015 2017 2018
2013
Where we are now ? 55 18 6 1
YEARS YEARS YEARS YEAR

We are at the NISQ (Noisy Intermediate-Scale Quantum) era.

Quantum computers can be used but they are stable for very

short time (noise, decoherence, ...). Only short QC circuits can
be run.

chipset quantique o

When is beyond the NISQ era?
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https://sites.google.com/uw.edu/qcqisfornucleartheory/home

General strategy

Strategy

Constraint: -Work with a restricted number of operation

Take a simple version of

10 00

your favorite many-body problem Sl - [ 0 o :.:]
S
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Hadamard — . TR
adamar _@ \/i [1 —1] controlled-Z \'/, o 'T' [:: :I: (I’ 0']

i 0 1 . 1000
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Use standard QC algorithms /8 7 [1 0 ] Pt > EESEEER
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. A SUTeme nt B Projection anto [0 and |1)
Propose new QC algorithms N i curyin gl qbi
4 (time goes lelt to nght)
classical bit P wire carrying 4 single chisical bit
noqubits /" wire carrying 1 qubits

-Design new algorithms adapted to the
Test on a Test on a true many-body problem
QC emulator QC

-Control the inherent quantum noise



PHYSICAL REVIEW LETTERS 120, 210501 (2018)

Illustration |

Cloud Quantum Computing of an Atomic Nucleus

Strategy

E.F Dumitrescu,] A McCaskey,2 G. Hagen,“ G.R. Jansen,s’3 T.D. Morris,“’3 T. Papenbrock,A’B’*
R.C. Pooser,"* D.J. Dean,® and P. Lougovskim

Take a simple version of Schematic deuteron Hamiltonian in Harmonic basis
N-1
your favorite many-body problem Hy = Z=0<n’I(T+ V)|n)al,a,. CLL(an) create (annih.)

nn=01,...N—1 1 deuteron in |’n,>

Use Pauli matrices+Jordan-Wigner transformation

Map/formulate it as a problem RN AP P L
with Qubit " s [,11 Z,](Xn Y,)  0(1) particlesin [n)=>| 1) (] 1))
‘ This automatically map the Hamiltonian as a

function of Pauli Matrix
‘ Use the VQE quantum-classical algorithm

Use standard QC algorithms with 10000 measurements on QX5 (19Q)
or = ' ' '
Propose new QC algorithms N
'9, 0
-1
Test on a Test on a true X

QC emulator QC




lllustration Il

PHYSICAL REVIEW LETTERS 123, 090501 (2019)

Strategy

Take a simple version of
your favorite many-body problem

Map/formulate it as a problem
with Qubit

Use standard QC algorithms
or

Propose new QC algorithms

Test on a
QC emulator QC

Test on a true

6 Models on Quantum Computers

Andrei Alexandru,u‘* Paulo F. Bc:daque,z‘lr Henry Lamm®** and Scott Lawrence>*

(NuQS Collaboration)

Start with the discretized o model

M= Z( m(r) + 5 len(r+1>—n(r>12)

Map it to a Spin algebra (fuzzy sphere)
gzvzlll—)HO‘P _K—Z [‘.ﬂk,[J]k,‘P]]

Ji are generators of the SU(2) algebra

“only” j=1/2 was considered

Ih=180,/V3, j,=0,803/V3, j3=0,80,/V3,
This g L

mm) Use the Suzuk

Very limited studies exist, e.g.:

+
S peC Ifl C QC © 1+1 D QED (Schwinger model) on a few-qubit trapped-ion
0.12f quantum computer
0.10f © Quantum-Classical calculation of Schwinger Model
£ 008 © U(1) lattice gauge theory without matter in 2 & 3 spatial
5 dimensions
0
g s ©Zeta-regularized vacuum expectation values
® o0af 7
3 ©0(3) nonlinear sigma model in 1+1 dimensions
0.02 ..:.
0.00




Summary

©C2N - CNRS

©lnnsbruck University

©Google

©U. of Bristol

m) A.l is an existing widely used technology

mm) Can potentially boost the nuclear theory field.

mm) Possible impact: guiding exp. on where are
the relevant information

mm) Quantum computing is a high risk/high benefit
interdisciplinary field

=) It might lead to unprecedented boost in theory
(see emerging US program)

mm) It leads to natural link between public research and
private companies (IBM, Google, ...)

=) It leads to natural link between public research and
private companies (IBM, Google, ...)

# Emerging QC programs in France



Summary

©C2N - CNRS

©lnnsbruck University

©OUNSW Sydney !
©Google

©U. of Bristol

mm) A.l. is an existing widely used technology

# Can potentially boost the nuclear theory field.

# Possible impact: guiding exp. on where are
the relevant information

Synergy between CNRS,

CEA, CEA-DAM

mm) Quantum computing is a high risk/high benefit
interdisciplinary field

# It might lead to unprecedented boost in theory
(see emerging US program

Synergy:
Impulse [Phynet team in [JCLab Orsay]

In IN2P3 — First workshop in Orsay

(~70 participants, physicists, engineers and
computer scientists)



